Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 263(Pt 2): 130511, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423443

RESUMO

The mechanical properties of ionic conductive hydrogels (ICHs) are generally inadequate, leading to their susceptibility to breakage under external forces and consequently resulting in the failure of flexible electronic devices. In this work, a simple and convenient strategy was proposed based on the synergistic effect of ion cross-linking and salting out, in which the hydrogels consisting of polyvinyl alcohol (PVA) and xanthan gum (XG) were immersed in zinc sulfate (ZnSO4) solution to obtain ICHs with exceptional mechanical properties. The salt-out effects between PVA chains and SO42- ions along with the cross-linked network of XG chains and Zn2+ ions contribute to the desirable mechanical properties of ICHs. Notably, the mechanical properties of ICHs can be adjusted by changing the concentration of ZnSO4 solution. Consequently, the optimum fracture stress and the fracture energy can reach 3.38 MPa and 12.13 KJ m-2, respectively. Moreover, the ICHs demonstrated a favorable sensitivity (up to 2.05) when utilized as a strain sensor, exhibiting an accurate detection of human body movements across various amplitudes.


Assuntos
Hidrogéis , Polissacarídeos Bacterianos , Álcool de Polivinil , Humanos , Etanol , Cloreto de Sódio , Condutividade Elétrica , Íons , Poli A , Cloreto de Polivinila
2.
Mater Horiz ; 10(6): 2271-2280, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37022102

RESUMO

On-skin hydrogel electrodes are poorly conformable in sweaty scenarios due to low electrode-skin adhesion resulting from the sweat film formed on the skin surface, which seriously hinders practical applications. In this study, we fabricated a tough adhesive cellulose-nanofibril/poly(acrylic acid) (CNF/PAA) hydrogel with tight hydrogen-bond (H-bond) networks based on a common monomer and a biomass resource. Furthermore, inherent H-bonded network structures can be disrupted through judicious engineering using excess hydronium ions produced through sweating, which facilitate the transition to protonation and modulate the release of active groups (i.e., hydroxyl and carboxyl groups) accompanied by a pH drop. The lower pH enhances adhesive performance, especially on skin, with a 9.7-fold higher interfacial toughness (453.47 vs. 46.74 J m-2), an 8.6-fold higher shear strength (600.14 vs. 69.71 kPa), and a 10.4-fold higher tensile strength (556.44 vs. 53.67 kPa) observed at pH 4.5 compared to the corresponding values at pH 7.5. Our prepared hydrogel electrode remains conformable on sweaty skin when assembled as a self-powered electronic skin (e-skin) and enables electrophysiological signals to be reliably collected with high signal-to-noise ratios when exercising. The strategy presented here promotes the design of high-performance adhesive hydrogels that may serve to record continuous electrophysiological signals under real-life conditions (beyond sweating) for various intelligent monitoring systems.


Assuntos
Adesivos , Dispositivos Eletrônicos Vestíveis , Adesivos/química , Sudorese , Suor , Hidrogéis , Concentração de Íons de Hidrogênio
3.
Biomacromolecules ; 24(3): 1184-1193, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36808988

RESUMO

Polyurethane materials will come into contact with different solvents in daily life, and at the same time, they will be subject to different degrees of collision, wear and tear. Failure to take corresponding preventative or reparative measures will result in a waste of resources and an increase in costs. To this end, we prepared a novel polysiloxane with isobornyl acrylate and thiol groups as side groups, which was further used in the preparation of poly(thiourethane-urethane) materials. Thiourethane bonds generated by the click reaction of thiol groups with isocyanates endow poly(thiourethane-urethane) materials with the ability to heal and reprocess. Isobornyl acrylate with a large sterically hindered rigid ring promotes segment migration, accelerating the exchange of thiourethane bonds, which is beneficial to the recycling of materials. These results not only promote the development of terpene derivative-based polysiloxanes but also show the great potential of thiourethane as a dynamic covalent bond in the field of polymer reprocessing and healing.


Assuntos
Acrilatos , Siloxanas , Poliuretanos/química , Compostos de Sulfidrila
4.
Carbohydr Polym ; 308: 120654, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36813344

RESUMO

Self-healing materials suffer from a trade-off relationship between their self-healing ability and mechanical strength, which limits their applications. Therefore, we developed a room-temperature self-healing supramolecular composite based on polyurethane (PU) elastomer, cellulose nanocrystals (CNCs), and multiple dynamic bonds. In this system, the abundant hydroxyl groups on the surfaces of the CNCs form multiple hydrogen bonds with the PU elastomer, yielding a dynamic physical cross-linking network. This dynamic network enables self-healing without degrading the mechanical properties. As a result, the obtained supramolecular composites exhibited high tensile strength (24.5 ± 2.3 MPa), good elongation at break (1484.8 ± 74.9 %), favourable toughness (156.4 ± 31.1 MJ m-3, which is equivalent to that of spider silk and 5.1-times higher than that of aluminium), and excellent self-healing efficiency (95 ± 1.9 %). Notably, the mechanical properties of the supramolecular composites were almost completely retained after reprocessing three times. Further, using these composites, flexible electronic sensors were prepared and tested. In summary, we have reported a method for preparing supramolecular materials having high toughness and room temperature self-healing ability that have applications in flexible electronics.

5.
J Colloid Interface Sci ; 631(Pt B): 239-248, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36401931

RESUMO

Recently, conductive composites have been used in flexible electronic devices and have attracted attention. The integration of self-healing, high sensitivity, large tensile strength, environmental stability, and easy recyclability into conductive composites is very desirable yet challenging. Hence, a conductive composite as a flexible strain sensor with a self-healing and recyclability is facilely developed, with a polyurethane (PU) elastomer bearing dynamic boronic ester as the polymer matrix and carbon nanotubes (CNTs) as a conductive filler. Due to the dynamic boronic ester bond and hydrogen bond, the prepared polyurethane conductive composite has good self-healing and mechanical properties. It not only has a high healing efficiency of 78 % but also has a tensile strength of 15.4 MPa and an elongation at break of 420 %. In addition, the prepared conductive composite has high conductivity (0.57 mS/cm) and sensitivity. As a wearable sensor, it can identify human activities in all directions, such as elbow and finger bending, speaking, and facial changes. Consequently, the polyurethane conductive composite prepared in this study exhibited wonderful application potential in wearable electronic devices such as self-healing strain sensors.


Assuntos
Nanotubos de Carbono , Dispositivos Eletrônicos Vestíveis , Humanos , Poliuretanos , Condutividade Elétrica , Ésteres
6.
Int J Biol Macromol ; 183: 1911-1924, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34097955

RESUMO

Hydrogels have great potential in food packaging. However, stimuli-responsive preservative delivery-based hydrogels for emerging active packaging have not yet been explored. Herein, Unprecedented pH/temperature-responsive hydrogel films for emerging active climacteric fruit packaging were developed based on TEMPO-oxidized nanofibrillated cellulose (TOCNFs) from wheat straw with food-grade cationic-modified poly(N-isopropyl acrylamide-co-acrylamide) (CPNIPAM-AM). TOCNF incorporation into CPNIPAM-AM revealed desirable enhancement of characterization, antimicrobial properties, and pH/thermal-responsive behaviour. In-vitro delivery and release mechanism studies with natamycin revealed the fastest release rates in preferred low pH media, up to 32.1 times higher than that under neutral conditions via anomalous diffusion. Applying a thermal stimulus increased natamycin release rates, providing 1.5-21% gradual-additional pulses by Fickian diffusion. The final hydrogel film showed efficient decay control in response to stimuli of the climacteric fruit environment with safe, recyclable, and feasible application demonstrating the significant potential to be used as an alternative-sustainable material for stimuli-triggered preservative delivery in climacteric fruit packaging.


Assuntos
Anti-Infecciosos/química , Antioxidantes/química , Óxidos N-Cíclicos/química , Metilgalactosídeos/química , Embalagem de Alimentos , Temperatura Alta , Concentração de Íons de Hidrogênio , Nanofibras , Triticum/química
7.
Int J Biol Macromol ; 156: 1418-1424, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31760000

RESUMO

The removal of arsenic from reservoirs is a matter of great concern in many parts of the world. Since adsorption is one of the most effective methods for treating arsenic-containing media, iron oxide nanorods were prepared using cellulose nanocrystals (CNs) as a template to remove this harmful metal from aqueous solutions. X-ray diffraction (XRD) analysis showed that Fe(OH)3 was formed in the initial stage of the hydrothermal reaction, and Fe(OH)3 was transformed into Fe2O3 as the hydrothermal reaction proceeded. Transmission electron microscopy (TEM) analysis showed that the length of the iron oxide nanorods was nearly 200 nm, and the width was 10 nm. Moreover, adsorption property studies showed that the maximal amount of As(III) and As(V) adsorption, corresponding to levels of 13.866 mg/g and 15.712 mg/g, occurred at pH levels of 7 and 3, respectively. The adsorption process conformed to the quasi-second-order kinetic and Langmuir adsorption isotherm models, indicating that the adsorption process consists of a chemical adsorption of monolayers. The results indicate that this composite can be used as a potential adsorbent for treatment of water containing harmful substances.


Assuntos
Arsênio/isolamento & purificação , Celulose/química , Ferro/química , Nanocompostos/química , Nanopartículas/química , Nanotubos/química , Purificação da Água/métodos , Adsorção , Arsênio/química , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
8.
ACS Omega ; 4(7): 11921-11927, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460303

RESUMO

α-Pinene-modified triethoxysilane (α-PTES) was synthesized by hydrosilylation in the presence of Karstedt's catalyst. The structure of α-PTES was determined by Fourier transform infrared spectroscopy and nuclear magnetic resonance. Under the catalysis of an organotin catalyst, α-PTES, which was the cross-linking agent, and the hydroxy-terminated poly(dimethylsiloxane) matrix were utilized to prepare the room-temperature vulcanized silicone rubber. Morphology, thermal performance, and mechanical properties of the modified silicone rubber were investigated by scanning electron microscopy, thermal gravimetric analysis, dynamic mechanical analysis, and a universal testing machine. Because of the strong rigidity of the ring structure of α-pinene, the thermal and mechanical properties of modified silicone rubber were improved greatly than those of the silicone rubber, and the cross-linking agent of which was methyltriethoxysilane. Results showed that the tensile strength and the break at elongation increased by 69.2 and 125%, respectively, and they are nearly doubled compared to the unmodified silicone rubber.

9.
Chem Biol Drug Des ; 94(2): 1457-1466, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30920166

RESUMO

A series of novel isolongifoleno[7,8-d]thiazolo[3,2-a]pyrimidine derivatives (4a-4x) were synthesized from isolongifolanone according fragment-based design strategy, and their anticancer activity against human aortic smooth muscle cells (HASMC), human breast cancer (MCF-7) cells, human cervical cancer (HeLa) cells, and human liver cancer (HepG2) cells were investigated. Results of the anticancer activity illustrated that most of the compounds showed potent antitumor activity and compound 4i proved to be the most active derivative with IC50 values of 0.33 ± 0.24 (for MCF-7 cells), 0.52 ± 0.13 (for HeLa cells), and 3.09 ± 0.11 µM (for HepG2 cells), respectively. Moreover, we assessed the effects of 4i on cell apoptosis, cell cycle distribution, mitochondrial membrane potential, and reactive oxygen species (ROS) generation. The results indicated that compound 4i altered mitochondrial membrane potential and produced ROS leading to cell apoptosis of MCF-7 cells in a dose-dependent manner, however, without affecting cell cycle progression. These findings suggested that 4i was an effective compound and provided a promising candidate for anticancer drugs.


Assuntos
Antineoplásicos , Apoptose/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neoplasias , Pirimidinas , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Pirimidinas/síntese química , Pirimidinas/química , Pirimidinas/farmacologia
10.
J Agric Food Chem ; 67(2): 637-643, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30601645

RESUMO

The absorbent materials synthesized from biosources with low cost and high selectivity for oils and organic solvents have attracted increasing attention in the field of oil spillage and discharge of organic chemicals. We developed a convenient surface-grafting method to prepare efficient and recyclable biobased aerogels from epoxidized soybean oil (ESO)-modified cellulose at room temperature. The porous network-like structure of the cellulose aerogel was still fully retained after undergoing hydrophobic modification with ESO. Moreover, the modified aerogels possessed excellent hydrophobicity with a water contact angle of 132.6°. Moreover, the absorbent ability of the hydrophobic cellulose aerogels was systematically assessed. The results showed that modified aerogels could retain more than 90% absorption capacity even after 30 absorption-desorption cycles, indicating that the ESO-grafted cellulose aerogels have practical applications in the oil-water separation from industrial wastewater and oil-leakage removal.


Assuntos
Celulose/química , Géis/química , Óleos/química , Óleo de Soja/química , Purificação da Água/instrumentação , Interações Hidrofóbicas e Hidrofílicas , Poluição por Petróleo/análise , Porosidade , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...